Seven-coordinated scandium(III) chloroions in ScCl₃-CsCl molten **mixtures at 600–900 C**

Georgia D. Zissi and George N. Papatheodorou *

Institute of Chemical Engineering and High Temperature Chemical Processes - FORTH and Department of Chemical Engineering, University of Patras, P.O.Box 1414, Patras, GR-26500, Greece

Received 4th April 2002, Accepted 28th May 2002 First published as an Advance Article on the web 10th June 2002

Raman spectroscopic measurements of ScCl₃–CsCl molten **mixtures in the temperature range of 600–900 C and** compositions up to 25 mol% ScCl₃ indicate that the **predominant scandium(III) chloroions in these melts are** ScCl_{6}^{3-} and a novel all chloride highly coordinated ScCl_{7}^{4-} .

The structural properties of a large number of trivalent rare earth halide (LX_3) –alkali halide (AX) molten mixtures have been investigated directly by scattering experiments (neutron, X-ray, Raman) or indirectly from their thermodynamic and transport properties.**1,2** Furthermore, during the past few years computer simulations have been used to study the structure of these melts.**³** Detailed Raman spectroscopic measurements of a series of LX_3 –AX (X = F, Cl, Br)⁴ mixtures indicate that the spectral behavior and structure of these melts are very similar, especially in mixtures dilute in rare earth halide. At LX_3 mole fractions near and below 0.25 the spectra show two main bands, P_1 (polarized) and D_1 (depolarized), which are assigned to the $v_1(A_{1g})$ and $v_3(F_{2g})$ modes of the LX_6^{3-} octahedra which are the predominant species in these melts. The octahedra are present at all compositions up to 25 mol% in LX_3 and at all temperatures studied above the binary liquidus. The melting of the solid compounds $A_3 L X_6$, having the trivalent rare earth as isolated LX_6^{3-} octahedra occurs with no drastic changes in the vibrational modes of the octahedra (*i.e.* the vibrational modes of the LX_6^{3-} octahedra in the solid are transferred into the melt).**⁴**

In the present note we show that the $ScCl₃-ACl$ (A = Cs) binary system with x_{ScCl_3} < 0.25 behaves differently to the other rare earth halide–alkali halide melts. Furthermore, we give evidence for the existence of $SCCl₇⁴⁻$ species at compositions below 25 mol% in ScCl**3** and in the temperature range between 600 and 900 °C. The coordination chemistry of scandium(III), including highly coordinated Sc species, has been recently reviewed.**⁵**

The sources and methods for preparation and purification of ScCl₃ and CsCl are described in ref. 6. The Raman apparatus with the optical furnace and the procedures for measuring hightemperature spectra of melts were the same as before.**4,6**

Raman spectra were measured at ScCl₃ compositions of 4, 6.5, 14.5 and 25 mol% and at temperatures from the liquidus temperature up to 900 $^{\circ}$ C for each composition. Fig. 1 shows the composition dependence of the spectra measured at temperatures a few degrees above the liquidus temperature for each composition. At 25 mol[%] ScCl₃ the spectra are characterized by a strong polarized P_1 band at 275 cm⁻¹ and a depolarized D_1 band at 145 cm⁻¹. Based on our previous work⁴ these bands are assigned to the $v_1(A_{1g})$ and $v_5(F_{2g})$ modes of the ScCl³⁻ octahedra. Further support for the assignment is our recent work⁶ concerning the changes of the vibrational modes upon melting the $Cs_2NaScCl_6$ and Cs_3ScCl_6 solid compounds. It has been shown that the vibrational modes of the independent $SCCl₆³$ octahedra existing in these solids are transferred into the melt giving the P_1 (v_1 , A_{1g}) and D_1 (v_5 , F_{2g}) bands. The weak bands at 340 and 310 cm⁻¹ (Fig. 1) are associated with the $Sc_2Cl_9^{3-}$ and ScCl₄ species, respectively, as discussed elsewhere.^{6,7}

COMMUNICATION

Fig. 1 Composition dependence of the Raman spectra of x ScCl₃– $(1 - x)$ CsCl $(0 \le x \le 0.25)$ molten mixtures a few degrees above the binary liquidus temperature. Conditions: laser wavelength $\lambda_0 = 488.0$ nm, laser power = 200 mW, spectral slit width = 4 cm^{-1} , time constant = 0.3 s, scan rate = 0.8 cm⁻¹ s⁻¹.

As the ScCl₃ mole fraction is lowered from 25 to 4 mol[%] the rather symmetric P_1 (v_1 , A_{1g}) band changes. A shoulder, marked as H in the spectra of Fig. 1, appears at $\approx 260 \text{ cm}^{-1}$ whose intensity increases relative to the P_1 band intensity with decreasing ScCl₃ mole fraction. In the very dilute ScCl₃ melts the H band predominates. The frequency of the new band is at lower energies than that of $ScCl₆³⁻$ indicating a species with scandium coordination higher than six.

The situation and the observed spectral changes are similar to the behavior of the $ThCl_4$ – $CsCl^8$ and ZrF_4 – KF^9 melt mixtures. It has been shown that dissolution of the tetravalent metal halide in the corresponding alkali halide leads to the establishment of an equilibrium of the type:

$$
MX_7^{3-} \stackrel{\longleftarrow}{\longrightarrow} MX_6^{2-} + X^-
$$
 (1)

 $(M = Th, Zr; X = \text{halide})$ where both a six-coordinated (O_h) and a seven-coordinated (D_{5h}) species are present. Equilibrium (1) shifts to the right with increasing temperature and alkali halide mole fraction. The frequency ratio of the stretching modes of the six- and seven-coordinated species is $v_1(MX_6^{2-})/v_1(MX_7^{3-})$ ≈ 1.07 for both the thorium and the zirconium anions. The frequency ratio for the TF₆ and TF²⁻ (T = Sb, Bi) anions is similar,¹⁰ giving $v_1(\text{TF}_6)/v_1(\text{TF}_7^2) \approx 1.08$. In the case of the

DOI: 10.1039/b203339a *J. Chem. Soc*., *Dalton Trans*., 2002, 2599–2600 **2599**

This journal is © The Royal Society of Chemistry 2002

Fig. 2 Temperature dependence of the Raman spectra of a 6.5 mol% ScCl**3**–93.5 mol% CsCl molten mixture. Conditions as in Fig. 1. Inset: ∆*H* calculation from an Arrhenius-like plot.

scandium system the ratio $v_1(\text{ScCl}_6^{3-})/v(\text{H}, \text{ band}) \approx 1.06$, *i.e.* smaller, but close to the ratios of the above four sets of anions. We consider this as an indication that the new species giving rise to the H band is a seven-coordinated scandium chloroanion and we assign the H band to the $v_1(A_1)$ vibrational mode of ScCl^{4–} species. By assuming, as before,^{8,9} a D_{Sh} symmetry for the seven-coordinated species, the main expected Raman active modes, apart from the $v_1(A'_1)$, are the $v_{10}(E'_2)$ and $v_8(E'_1)$.^{8–10} By scaling the frequencies of this scandium (III) chloroion to the frequencies of other seven-coordinated metal halide compounds (*i.e.* Cs_3ThCl_7 ⁸, Na_3ZrF_7 ⁹, Cs_2BiF_7 and Cs_2SbF_7 ¹⁰) we can estimate that the $v_{10}(E_1)$ and $v_8(E_1)$ bands of the scandium species lie in the frequency range of $120-180$ cm⁻¹ and presumably overlap with the D_1 band of the octahedra. The vertical intensity changes of the H and P_1 bands with composition (Fig. 1) imply that an equilibrium:

$$
ScCl_7^{4-} \leq ScCl_6^{3-} + Cl^-
$$
 (2)

is established and that the structure of melts dilute in ScCl₃ is predominated by the six- and the seven-coordinated scandium species.

In support of the proposed equilibrium (2) are the temperature dependent measurements of the relative Raman intensities. This is shown in Fig. 2 for the 6.5 mol% ScCl₃ melt studied over a temperature range of 200 °C. The relative intensity changes of the H and P_1 bands indicate that the sevencoordinated species predominate in the melt structure at lower temperatures while the six-coordinated species are favored at higher temperatures. Similar changes with temperature were also observed in the spectra of mixtures with compositions of 4 and 14.5 mol% ScCl**3**.

By resolving the overlapping H and P_1 bands for all compositions studied we could measure the integrated relative intensities and then from an Arrhenius-like plot (see *e.g.* inset of Fig. 2) we could calculate the enthalpy of equilibrium (2). An average value of $\Delta H \approx 70 \pm 10 \text{ kJ} \text{ mol}^{-1}$ was found. This value is higher than that of equilibrium (1) for the ThCl₄–CsCl (≈35 kJ mol⁻¹) and ZrF_4-KF (≈37 kJ mol⁻¹) systems indicating a decreased stability for the ScCl³⁻ anion relative to the ScCl⁴⁻ anion. An account of the relative stabilities of the six- and seven-coordinated species participating in equilibria (1) and (2), in terms of the relative ionic radii of both the cations and anions involved, will be presented elsewhere.**⁷**

It is evident from the above that the structural properties of dilute solutions of ScCl₃ in caesium chloride deviate from the systematics established for the other rare earth trihalides.**⁴** Two predominant coordination geometries $(ScCl₆³⁻, SCCl₇⁴⁻)$ are present instead of one (LX_6^{3-}) . Thus, it seems that the ScCl₃-ACl melts may be good candidates for testing theoretical and computer simulation models **³** of ionic liquid mixtures.

Notes and references

- 1 G. N. Papatheodorou and S. N. Yannopoulos, in *Molten Salts: from Fundamentals to Applications*, NATO ASI Symposium Series, Ser. 2, ed. M. Gaune-Escard, Kluwer, Boston, 2002, vol. 52, p. 47.
- 2 M. P. Tosi, D. K. Price and M. L. Saboungi, *Annu. Rev. Phys. Chem.*, 1993, **44**, 173.
- 3 F. Hutchinson, M. Wilson and P. A. Madden, *Mol. Phys.*, 2001, **99**, 811.
- 4 G. M. Photiadis, B. Børresen and G. N. Papatheodorou, *J. Chem. Soc., Faraday Trans.*, 1998, **94**, 2605 and refs. therein.
- 5 (*a*) S. A. Cotton, *Polyhedron*, 1999, **18**, 1691; (*b*) P. A. Meehan, D. R. Aris and G. R. Willey, *Coord. Chem. Rev.*, 1999, **181**, 121.
- 6 G. D. Zissi and G. N. Papatheodorou, *Chem. Phys. Lett.*, 1999, **308**,
- 51.
- 7 G. D. Zissi and G. N. Papatheodorou, to be published.
- 8 G. M. Photiadis and G. N. Papatheodorou, *J. Chem. Soc., Dalton Trans.*, 1999, 3541.
- 9 V. Dracopoulos, J. Vagelatos and G. N. Papatheodorou, *J. Chem. Soc., Dalton Trans.*, 2001, 1117.
- 10 G. W. Drake, D. A. Dixon, J. A. Sheehy, J. A. Boatz and K. O. Christe, *J. Am. Chem. Soc.*, 1998, **120**, 8392 and refs. therein.