Seven-coordinated scandium(III) chloroions in ScCl₃–CsCl molten mixtures at 600–900 °C

Georgia D. Zissi and George N. Papatheodorou*

Institute of Chemical Engineering and High Temperature Chemical Processes - FORTH and Department of Chemical Engineering, University of Patras, P.O.Box 1414, Patras, GR-26500, Greece

Received 4th April 2002, Accepted 28th May 2002 First published as an Advance Article on the web 10th June 2002

Raman spectroscopic measurements of ScCl₃–CsCl molten mixtures in the temperature range of 600–900 °C and compositions up to 25 mol% ScCl₃ indicate that the predominant scandium(III) chloroions in these melts are ScCl₃^{6–} and a novel all chloride highly coordinated ScCl₇^{4–}.

The structural properties of a large number of trivalent rare earth halide (LX_3) -alkali halide (AX) molten mixtures have been investigated directly by scattering experiments (neutron, X-ray, Raman) or indirectly from their thermodynamic and transport properties.^{1,2} Furthermore, during the past few years computer simulations have been used to study the structure of these melts.³ Detailed Raman spectroscopic measurements of a series of LX_3 -AX (X = F, Cl, Br)⁴ mixtures indicate that the spectral behavior and structure of these melts are very similar, especially in mixtures dilute in rare earth halide. At LX₃ mole fractions near and below 0.25 the spectra show two main bands, P_1 (polarized) and D_1 (depolarized), which are assigned to the $v_1(A_{1g})$ and $v_3(F_{2g})$ modes of the LX_6^{3-} octahedra which are the predominant species in these melts. The octahedra are present at all compositions up to 25 mol% in LX3 and at all temperatures studied above the binary liquidus. The melting of the solid compounds A₃LX₆, having the trivalent rare earth as isolated LX_6^{3-} octahedra occurs with no drastic changes in the vibrational modes of the octahedra (i.e. the vibrational modes of the LX_6^{3-} octahedra in the solid are transferred into the melt).4

In the present note we show that the ScCl₃–ACl (A = Cs) binary system with $x_{\text{SeCl}_3} < 0.25$ behaves differently to the other rare earth halide–alkali halide melts. Furthermore, we give evidence for the existence of ScCl₇^{4–} species at compositions below 25 mol% in ScCl₃ and in the temperature range between 600 and 900 °C. The coordination chemistry of scandium(III), including highly coordinated Sc species, has been recently reviewed.⁵

The sources and methods for preparation and purification of $ScCl_3$ and CsCl are described in ref. 6. The Raman apparatus with the optical furnace and the procedures for measuring high-temperature spectra of melts were the same as before.^{4,6}

Raman spectra were measured at ScCl₃ compositions of 4, 6.5, 14.5 and 25 mol% and at temperatures from the liquidus temperature up to 900 °C for each composition. Fig. 1 shows the composition dependence of the spectra measured at temperatures a few degrees above the liquidus temperature for each composition. At 25 mol% ScCl₃ the spectra are characterized by a strong polarized P_1 band at 275 cm⁻¹ and a depolarized D_1 band at 145 cm⁻¹. Based on our previous work⁴ these bands are assigned to the $v_1(A_{1g})$ and $v_5(F_{2g})$ modes of the ScCl₆³⁻ octahedra. Further support for the assignment is our recent work⁶ concerning the changes of the vibrational modes upon melting the Cs₂NaScCl₆ and Cs₃ScCl₆ solid compounds. It has been shown that the vibrational modes of the independent ScCl₆³ octahedra existing in these solids are transferred into the melt giving the $P_1(v_1, \tilde{A}_{1g})$ and $D_1(v_5, F_{2g})$ bands. The weak bands at 340 and 310 cm⁻¹ (Fig. 1) are associated with the Sc₂Cl³⁻₉ and $ScCl_{4}^{-}$ species, respectively, as discussed elsewhere.^{6,7}

DOI: 10.1039/b203339a

Fig. 1 Composition dependence of the Raman spectra of xScCl₃–(1 - x)CsCl (0 < x < 0.25) molten mixtures a few degrees above the binary liquidus temperature. Conditions: laser wavelength $\lambda_0 = 488.0$ nm, laser power = 200 mW, spectral slit width = 4 cm⁻¹, time constant = 0.3 s, scan rate = 0.8 cm⁻¹ s⁻¹.

As the ScCl₃ mole fraction is lowered from 25 to 4 mol% the rather symmetric P₁ (v_1 , A_{1g}) band changes. A shoulder, marked as H in the spectra of Fig. 1, appears at $\approx 260 \text{ cm}^{-1}$ whose intensity increases relative to the P₁ band intensity with decreasing ScCl₃ mole fraction. In the very dilute ScCl₃ melts the H band predominates. The frequency of the new band is at lower energies than that of ScCl₃²⁻ indicating a species with scandium coordination higher than six.

The situation and the observed spectral changes are similar to the behavior of the ThCl₄–CsCl⁸ and ZrF_4 –KF⁹ melt mixtures. It has been shown that dissolution of the tetravalent metal halide in the corresponding alkali halide leads to the establishment of an equilibrium of the type:

$$\mathbf{MX}_7^{3-} \leftrightarrows \mathbf{MX}_6^{2-} + \mathbf{X}^- \tag{1}$$

(M = Th, Zr; X = halide) where both a six-coordinated (O_h) and a seven-coordinated (D_{5h}) species are present. Equilibrium (1) shifts to the right with increasing temperature and alkali halide mole fraction. The frequency ratio of the stretching modes of the six- and seven-coordinated species is $v_1(MX_6^{2-})/v_1(MX_7^{2-}) \approx 1.07$ for both the thorium and the zirconium anions. The frequency ratio for the TF₆ and TF₇²⁻ (T = Sb, Bi) anions is similar,¹⁰ giving $v_1(TF_6^{-})/v_1(TF_7^{2-}) \approx 1.08$. In the case of the

J. Chem. Soc., Dalton Trans., 2002, 2599–2600 2599

Fig. 2 Temperature dependence of the Raman spectra of a 6.5 mol% ScCl₃-93.5 mol% CsCl molten mixture. Conditions as in Fig. 1. Inset: ΔH calculation from an Arrhenius-like plot.

scandium system the ratio $v_1(\text{ScCl}_6^{3-})/v(\text{H}, \text{band}) \approx 1.06$, *i.e.* smaller, but close to the ratios of the above four sets of anions. We consider this as an indication that the new species giving rise to the H band is a seven-coordinated scandium chloroanion and we assign the H band to the $v_1(A_1)$ vibrational mode of ScCl_7^{4-} species. By assuming, as before,^{8,9} a D_{5h} symmetry for the seven-coordinated species, the main expected Raman active modes, apart from the $v_1(A_1)$, are the $v_{10}(\text{E}_2)$ and $v_8(\text{E}_1)^{.8-10}$ By scaling the frequencies of this scandium(III) chloroion to the frequencies of other seven-coordinated metal halide compounds (*i.e.* Cs₃ThCl₇,⁸ Na₃ZrF₇,⁹ Cs₂BiF₇ and Cs₂SbF₇⁻¹⁰) we can estimate that the $v_{10}(\text{E}_1)$ and $v_8(\text{E}_1)$ bands of the scandium species lie in the frequency range of 120–180 cm⁻¹ and presumably overlap with the D₁ band of the octahedra. The vertical intensity changes of the H and P₁ bands with composition (Fig. 1) imply that an equilibrium:

$$\operatorname{ScCl}_7^{4-} \hookrightarrow \operatorname{ScCl}_6^{3-} + \operatorname{Cl}^-$$
 (2)

is established and that the structure of melts dilute in ScCl₃ is predominated by the six- and the seven-coordinated scandium species.

In support of the proposed equilibrium (2) are the temperature dependent measurements of the relative Raman intensities. This is shown in Fig. 2 for the 6.5 mol% ScCl₃ melt studied over a temperature range of 200 °C. The relative intensity changes of the H and P₁ bands indicate that the sevencoordinated species predominate in the melt structure at lower temperatures while the six-coordinated species are favored at higher temperatures. Similar changes with temperature were also observed in the spectra of mixtures with compositions of 4 and 14.5 mol% ScCl₃.

By resolving the overlapping H and P₁ bands for all compositions studied we could measure the integrated relative intensities and then from an Arrhenius-like plot (see *e.g.* inset of Fig. 2) we could calculate the enthalpy of equilibrium (2). An average value of $\Delta H \approx 70 \pm 10$ kJ mol⁻¹ was found. This value is higher than that of equilibrium (1) for the ThCl₄–CsCl (≈ 35 kJ mol⁻¹) and ZrF₄–KF (≈ 37 kJ mol⁻¹) systems indicating a decreased stability for the ScCl₆^{3–} anion relative to the ScCl₇^{4–} anion. An account of the relative stabilities of the six- and seven-coordinated species participating in equilibria (1) and (2), in terms of the relative ionic radii of both the cations and anions involved, will be presented elsewhere.⁷

It is evident from the above that the structural properties of dilute solutions of $ScCl_3$ in caesium chloride deviate from the systematics established for the other rare earth trihalides.⁴ Two predominant coordination geometries ($ScCl_6^{3-}$, $ScCl_7^{4-}$) are present instead of one (LX_6^{3-}). Thus, it seems that the $ScCl_3$ -ACl melts may be good candidates for testing theoretical and computer simulation models ³ of ionic liquid mixtures.

Notes and references

- 1 G. N. Papatheodorou and S. N. Yannopoulos, in *Molten Salts: from Fundamentals to Applications*, NATO ASI Symposium Series, Ser. 2, ed. M. Gaune-Escard, Kluwer, Boston, 2002, vol. 52, p. 47.
- 2 M. P. Tosi, D. K. Price and M. L. Saboungi, Annu. Rev. Phys. Chem., 1993, 44, 173.
- 3 F. Hutchinson, M. Wilson and P. A. Madden, *Mol. Phys.*, 2001, 99, 811.
- 4 G. M. Photiadis, B. Børresen and G. N. Papatheodorou, J. Chem. Soc., Faraday Trans., 1998, 94, 2605 and refs. therein.
- 5 (a) S. A. Cotton, *Polyhedron*, 1999, **18**, 1691; (b) P. A. Meehan, D. R. Aris and G. R. Willey, *Coord. Chem. Rev.*, 1999, **181**, 121.
- 6 G. D. Zissi and G. N. Papatheodorou, *Chem. Phys. Lett.*, 1999, **308**,
- 51.
- 7 G. D. Zissi and G. N. Papatheodorou, to be published.
- 8 G. M. Photiadis and G. N. Papatheodorou, J. Chem. Soc., Dalton Trans., 1999, 3541.
- 9 V. Dracopoulos, J. Vagelatos and G. N. Papatheodorou, J. Chem. Soc., Dalton Trans., 2001, 1117.
- 10 G. W. Drake, D. A. Dixon, J. A. Sheehy, J. A. Boatz and K. O. Christe, J. Am. Chem. Soc., 1998, 120, 8392 and refs. therein.